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The thermodynamics and topology of mean-field models with 2+k body interaction terms �generalizing XY
model� are derived. Focusing on two particular cases �2+4 and 2+6 body interaction terms�, a comparison
between thermodynamic �phase transition energy, thermodynamically forbidden energy regions� and topologi-
cal �singularity and curvature of saddle entropy� properties is performed. We find that �i� a topological change
is present at the phase transition energy; however, �ii� only one topological change occurs, also for those
models exhibiting two phase transitions; �iii� the order of a phase transition is not completely signaled by the
curvature of topological quantities.
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I. INTRODUCTION

In recent years different authors suggested a possible to-
pological approach to the study of the phase transitions.
Within this approach it has been suggested that any thermo-
dynamic phase transition mirrors a topological change of the
potential energy hypersurface �1,2�, i.e., a change in the to-
pology of certain submanifolds in configuration space �for a
recent review see Refs. �3,4��. More specifically, the energy
density e where a thermodynamic phase transition takes
place �e=ec in the microcanonical, or e=e�Tc� in the canoni-
cal, ensemble� has been conjectured to be the same where a
topological change of the submanifold Me= �q �V�q��Ne�
appears �here q are the generalized coordinates, V�q� the
potential energy function, N the number of degrees of free-
dom�. This “topological hypothesis” has been subsequently
formalized in a theorem which, however, applies only to a
strict class of systems, described by smooth, bounded below,
confining, finite range potentials �5–7�. This theorem states
that a topological change is a necessary condition for the
presence of a phase transition. However, the study of model
systems fulfilling the requirements of the theorem is a very
hard task, due to analytical difficulty to solve the thermody-
namics and/or topology or to numerically calculate topologi-
cal quantities. For this reason, beside few cases �8–10�, many
works have been devoted to the study of tractable model
systems not-fulfilling the theorem hypotheses �10–16�. For
such models a variety of results has been obtained, some in
agreement and some not with the topological hypothesis �see
Table I of Ref. �3� for a summary�. Among the others, two
particular interesting questions remain to be answered.

The first question concerns the presence of topological
changes in correspondence of phase transition energy values.
Is a topological change in those systems undergoing a phase
transition always present? And more, is the energy e� where
topological change are observed coincident to ec, the thermo-
dynamic phase transition energy? It is well established that
for certain models �not fulfilling the hypotheses of the theo-
rem� the two energies are not coincident. Two different
mechanisms have been proposed to be responsible of this
discrepancy: a maximization procedure of a smooth function

generating a phase transition �as opposite mechanism with
respect to the topological one� �17� or an underlying saddle-
dominated dynamics for which the relevant topological en-
ergy level is not the instantaneous potential energy, rather it
is the potential energy where are located the saddles of V�q�
mostly visited at the thermodynamic phase transition state
point �“weak” topological hypothesis� �15,16�. It is worth
mentioning that in all the models analyzed so far there is
always a topological change �although at an energy not co-
incident with the thermodynamic one� in the presence of a
phase transition.

The second open question regards the possibility to infer
the order of the phase transition from the curvature proper-
ties of topological invariants such as the Euler characteristic.
In other words, is there a one-to-one correspondence be-
tween curvatures of thermodynamic entropy and some topo-
logical invariant quantity? In previous studies of toy models
�k-trigonometric model� �14�, capable of switching between
first- and second-order phase transition by tuning a control
parameter, a positive answer to this question was given. Spe-
cifically, we observed positive curvature of saddle entropy
for systems undergoing first-order phase transition, while a
standard negative curvature accompanied the second order
transitions. The relevant control parameter of the
k-trigonometric model is the number k of interacting bodies
in the Hamiltonian which, in turn, depends on the relative
phases of these k-interacting bodies.

In this paper we study a class of mean-field models with
different many-body interaction terms, which, therefore, can
be called the k+k� model. Both thermodynamics and topol-
ogy are analytically tractable, so a direct comparison can be
made between the two. Two particular model systems will be
analyzed �2+4 and 2+6�, which manifest a rich phase dia-
gram. Our main findings are the following. �i� There is al-
ways a topological change at the same energy level for all
the model systems, corresponding to the paramagnetic en-
ergy at which the phase transition �first or second order, de-
pending on the model� takes place. �ii� For one of the two
models two phase transitions are observed �paramagnetic-
magnetic second order transition, followed by a magnetic-
magnetic first order transition�, but a topological change is
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only present in correspondence of the paramagnetic-
magnetic transition. The second phase transition seems not to
have signature in the topology. �iii� A qualitative agreement
between saddle and thermodynamic entropy is obtained
�comparing positive and negative curvature regions�, al-
though the quantitative discrepancy does not allow one to
predict the presence of a first-order transition from topology
for certain values of coupling parameters �taking into ac-
count inherent saddles do not modified the discrepancy, even
though a better quantitative comparison is obtained�. Basi-
cally, the results of this paper point toward a weakening of
the link between “thermodynamic” and “topology of the po-
tential energy function” in mean-field systems. A richer sce-
nario is beginning to appear, and a comprehensive picture is
not presently at hand.

The paper is organized as follows: In Sec. II we will in-
troduce the model in its general form, in Sec. III we will
derive the canonical thermodynamics focusing on two par-
ticular cases, and in Sec. IV the topology will be analyzed,
calculating stationary point properties. Conclusions will be
drawn in Sec. V.

II. THE MODEL

We consider a class of mean-field Hamiltonians of the
form

H = �
k=1

M

H2k �1�

with

H2k = −
J2k

N2k−1 �
�i�,�j�

cos��i1
+ ¯ + �ik

− � j1
− ¯ − � jk

� ,

�2�

where the sum is over the sets �i�= i1 , ¯ , ik and �j�
= j1 , ¯ , jk �i , j=1, ¯ ,N� and ��i� are angular variables �i

� �0,2��. We restrict to ferromagnetic interactions, i.e., J2k

�0. The system described by Hamiltonian �1� can be viewed
as an ensemble of 2d rotors interacting through mean-field
potentials. For k=1 the Hamiltonian �2� reduces to the usual
XY mean-field Hamiltonian

H2 = −
J2

N
�
i,j

cos��i − � j� , �3�

while for k�1 we have 2k-body interaction terms. For
example, for k=2

H4 = −
J4

N3 �
i1,i2
j1,j2

cos��i1
+ �i2

− � j1
− � j2

� �4�

which has been recently introduced as a model for mode-
locking laser Hamiltonian �18�. Just to give a further ex-
ample that will be useful in the following, we explicitly write
also the k=3 case

H6 = −
J6

N5 �
i1,i2,i3
j1,j2,j3

cos��i1
+ �i2

+ �i3
− � j1

− � j2
− � j3

� . �5�

In this paper we will mainly focus on the case of two terms
contributing to Hamiltonian �1�

H = H2 + H2k, �6�

with k=2 and k=3, i.e., H=H2+H4 and H=H2+H6.

III. THERMODYNAMICS

In this section we derive the canonical thermodynamics.
Introducing the complex variable z

z = �ei� �
1

N
�
i=1

N

ei�i, �7�

the Hamiltonian �1� can be written as

H = − N�
k=1

M

J2k�
2k. �8�

It is now possible to write the partition function

Z =	 d���e−	H �9�

as �19�

Z 
	 d�e−Ng��;	�, �10�

where 	=1 /kBT �kB is the Boltzmann constant, in the fol-
lowing we set kB=1� and the function g�� ;	� is explicitly
written as

g��;	� = 	�
k=1

N

�2k − 1�J2k�
2k − ln I0
2	�

k=1

M

kJ2k�
2k−1� ,

�11�

where I0�x� is the modified Bessel function of order 0.
Performing the thermodynamic limit N→�, the saddle-

point solution dominates the integral in Eq. �10�. The saddle
point equation is written as

� =

I1
2	�
k

kJ2k�
2k−1�

I0
2	�
k

kJ2k�
2k−1� . �12�

This equation can have many solutions for �, that with the
lowest free energy is the stable one

	feq�	� = min
�

g��;	� . �13�

Thermodynamic properties are obtained from the 	 depen-
dence of g. We note that the “paramagnetic” ��=0� solution
always exists and is stable for small 	 value. On increasing 	
solutions with ��0 becomes possible and, eventually,
stable.
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We note that for J2=0 only first order phase transitions
are possible. Indeed, in order to have a second order transi-
tion the curvature of the free energy, or of the function g, has
to change around the paramagnetic solution �=0, from posi-
tive to negative. For J2�0, close to �=0, we can expand Eq.
�12� obtaining

g � 	J2�1 − 	J2��2, �14�

then a second-order phase transition takes place at 	J2=1 �if
not prevented by a first-order phase transition at higher tem-
perature�. For J2=0 instead, denoting with Jp the first non-
zero term �p�4�, the expansion of Eq. �12� reads

g � 	Jp�p, �15�

the curvature is always positive and then second-order tran-
sition cannot take place.

For a single term Hamiltonian H=H2k, the system under-
goes second- �k=1� or first- �k�2� order phase transition.
We do not analyze these cases here, as the thermodynamic-
topology relationship falls into the same class of similar
model systems XY �10� and k-trigonometric �14� already dis-
cussed in the literature. We focus our attention in many-
terms Hamiltonian, taking into account two interesting cases.

A. H2+H4 case

Considering the Hamiltonian H=H2+H4, similarly to the
corresponding Ising case �20�, the plane spanned by the two
coupling parameters is split in two regions �see Fig. 1�,
which, as can be seen from Eq. �12�, are only determined by
the ratio J4 /J2. Specifically, we find the following.

�i� For J4 /J21 /4 a second order phase transition takes
place at 	J2=1. As an example, in Fig. 2 the equilibrium
magnetization � �upper panel� and energy per particle
e=−J2�2−J4�4 �normalized by J2+J4, lower panel� are re-
ported as a function of the �scaled� inverse temperature 	J2
for the specific case J4 /J2=0.1.

�ii� For J4 /J2�1 /4 the transition becomes first order,
with a jump in both magnetization and energy—full lines in

Fig. 3, where the same quantities as in Fig. 2 are reported for
the specific case J4 /J2=1.0. The dashed lines in Fig. 3 rep-
resent metastable states: metastable minimum of free energy
for ee1 and local maximum for e�e1. For the particular
case J4 /J2=1 /4 a tricritical point is present at 	J2=1.

B. H2+H6 case

The case H=H2+H6 has a richer phenomenology �see
Fig. 4�. �i� For J6 /J20.46 the system, similarly to the case
H2+H4, undergoes a second order phase transition at 	J2
=1. Figure 5 reports, as an example, the order parameter and
the energy as a function of the scaled temperature for the
specific case J6 /J2=0.1. �ii� For 0.46J6 /J20.66 a first
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FIG. 1. �Color online� H2+H4 case. Phase diagram in the
�J4 /J2 ,	J2� plane. Second and first order phase transition �PT� lines
are reported.
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FIG. 2. �Color online� H2+H4 case. Equilibrium magnetization
� �upper panel� and energy e �rescaled by J2+J4, lower panel� as a
function of inverse temperature 	 �in unit of J2� for J4 /J2=0.1.
Second-order phase transition takes place at 	J2=1.
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FIG. 3. �Color online� H2+H4 case. Equilibrium �full lines� and
metastable �dashed lines� magnetization � �upper panel� and energy
e �rescaled by J2+J4, lower panel� as a function of inverse tempera-
ture 	 �in unit of J2� for J4 /J2=1.0. A first-order phase transition
takes place at 	J20.77. e1 is the energy corresponding to the
appearance of metastable free-energy states.
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order phase transition occurs after �on increasing 	, lowering
T� the second order one �Fig. 6 reports the specific case
J6 /J2=0.6�. �iii� For J6 /J2�0.66 only the first order transi-
tion survives �Fig. 7 reports the specific case J6 /J2=1.0�.

The dashed lines in Figs. 6 and 7 represent metastable
states: metastable minima for ee1 and e�e2 and local
maximum for e1ee2.

IV. TOPOLOGY

In this section we will study the topology of the two mod-
els introduced in the previous section. We will follow the
same line of calculation performed on similar models in pre-
vious works �14,18,21�. A quantity directly related to the
Euler characteristic of the manifold Me= �� �H����Ne�, is
the configurational entropy of saddles �14�:

��e� = − n�e�ln n�e� − �1 − n�e��ln�1 − n�e�� , �16�

where n�e� is the fractional saddle order �i.e., the fraction of
negative curvatures at the saddle points that are found in the

potential energy hypersurface when V�q�=Ne�. Indeed, we
can make the following arguments.

A stationary point is defined by

�H

�� j
= �

k=1

M

2kJ2k�
2k−1 sin�� j − �� = 0, ∀ j . �17�

The solutions with ��0 �those with �=0 are located at e
=0 energy� are obtained from sin�� j −��=0 �for all j�, then

� j = �� + mj��mod 2�, �18�

where mj = �0,1�. Substituting this solution in Eq. �7� we
obtain
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FIG. 6. �Color online� H2+H6 case. Equilibrium �full lines� and
metastable �dashed lines� magnetization � �upper panel� and energy
e �normalized by J2+J6, lower panel� as a function of inverse tem-
perature 	 �in unit of J2� for the specific case J6 /J2=0.6. A second-
order phase transition takes place at 	J2=1, followed by a first-
order one at 	J21.02. e1 and e2 are the energies corresponding to
the appearance of metastable free-energy states.
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FIG. 7. �Color online� H2+H6 case. Equilibrium �full lines� and
metastable �dashed lines� magnetization � �upper panel� and energy
e �normalized by J2+J6, lower panel� as a function of inverse tem-
perature 	 �in unit of J2� for the specific case J6 /J2=1.0. A first-
order phase transition takes place at 	J20.88. e1 and e2 are the
energies corresponding to the appearance of metastable free-energy
states.
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FIG. 4. �Color online� H2+H6 case. Phase diagram in the
�J6 /J2 ,	J2� plane. Second and first order phase transition �PT� lines
are reported.
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FIG. 5. �Color online� H2+H6 case. Equilibrium magnetization
� �upper panel� and energy e �normalized by J2+J6, lower panel� as
a function of inverse temperature 	 �in unit of J2� for J6 /J2=0.1.
Second-order phase transition takes place at 	J2=1.
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� = 1 − 2n , �19�

where

n =
1

N
�

j

mj �20�

is the fractional saddle order �as it will be clear soon� and we
have used the identity �−1�mj =1−2mj. We conclude that
there are no stationary points with n�1 /2 �� is positive
defined�. The order of a stationary point is defined by its
downward curvatures, i.e., by the number of negative eigen-
values of the Hessian matrix Hij =�2H /��i�� j. It is possible
to show that in the thermodynamic limit the Hessian be-
comes diagonal

Hij  �ij� j , �21�

where

� j = cos�� j − ���
k=1

M

2kJ2k�
2k−1 = �− 1�mj�

k=1

M

2kJ2k�
2k−1.

�22�

Therefore, the saddle order is given by the number of mj
=1 at the considered saddle point, and the fractional saddle
order n is then given by Eq. �20�. Moreover, the number of
saddles with a given n is given by the binomial coefficient,
then

��e� = lim
N→�

1

N
ln
 N

Nn�e�
� , �23�

from which the Eq. �16� follows straightforward. The latter
can be written in the form

��e� = −
1 − ��e�

2
ln

1 − ��e�
2

−
1 + ��e�

2
ln

1 + ��e�
2

,

�24�

where ��e� is obtained from the thermodynamics, i.e., from
the solution of the equation

e = − �
k=1

M

J2k�
2k�e� . �25�

We note that the quantity � is singular at e=0, due to the fact
that e�0 is a forbidden energy region, so � has a disconti-
nuity, jumping from a finite value to zero.

As discussed in the Introduction, a central quantity in the
comparison between thermodynamic and topology is the cur-
vature of ��e�. Specifically, we are interested in finding the
energy values where there is changes in curvature of ��e�,
i.e., the energies where the second derivative of ��e� van-
ishes. After some algebra we get

d2�

de2 = −
1

2

d�

de
�2

s���e�� , �26�

where the function s, which depends on e through ��e�, is

s��� =
1

1 − �
+

1

1 + �
+

�
k

2k�2k − 1�J2k�
2k−2

�
k

2kJ2k�
2k−1

ln
1 − �

1 + �
.

�27�

From Eq. �26� we have

s Œ 0 ⇔
d2�

de2 � 0, �28�

that is upward, null, downward curvature respectively.
Studying the positivity of s allows us to determine the cur-
vature of �. We now specialize the calculations to the two
previous cases.

A. H2+H4 case

In Fig. 8, upper panel, the quantity ��e� is plotted as a
function of energy e �normalized by J2+J4� for three selected
case J4 /J2=0.1,0.4,1.5. Full lines correspond to negative
curvature, while dashed lines to positive �symbols represent
turning points�. In the J4 /J2=0.1 case �second order phase
transition located at e=0� the curvature is always negative,
while in the other two both regions are present. The quantity
��e� is singular �discontinuous� at e=0, corresponding to the
thermodynamic transition energy. In Fig. 8, lower panel, the
plane �J4 /J2 ,e� is drawn �the energy is normalized by J2

+J4�. The light-grey region corresponds to positive curvature
of ��e�, its border being the null curvature line—the corre-
spondence with the turning points of ��e� in the upper panel
of Fig. 8 is evidenced with the thin dashed lines for J4 /J2
=0.4 and 1.5. The border of the light-grey region does not
intersect the value J4 /J2=0.1, and, therefore, no turning
point exists for such a J4 /J2 value.

The dark-grey region �that fully lies inside the light-grey
one� represents the thermodynamically forbidden region e
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FIG. 8. �Color online� H2+H4 case. �a� Saddle-entropy � as a
function of energy e �normalized by J2+J4� for J4 /J2=0.1,0.4,1.5.
Full �dashed� lines correspond to negative �positive� curvature.
Symbols mark turning points. �b� Couplings-energy plane: light-
grey �gold online� region corresponds to � positive curvature, dark-
grey �red online� region to entropy S positive curvature. Dashed line
is the inherent saddle counterpart of the border of dark region.
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�e1 �see Fig. 3�. It corresponds to positive curvature of ther-
modynamic entropy S�e�. If the topological hypothesis was
correct, the two, light- and dark-grey, regions would coin-
cide. This is not the case, suggesting a not one-to-one corre-
spondence between thermodynamic and saddle entropy.

In the study of other models �15,16�, when the energy of
the topological change were not coincident with the energy
of the phase transition, it was found that the “weak” topo-
logical hypothesis was correct. Indeed, it has been shown
that the correspondence between topological change and
phase transition energies were obtained considering inherent
saddle properties: the energy of topology transition has been
found to correspond to the inherent saddle energy. The latter
quantity was obtained minimizing the quantity W= ��V�2
�16,21,22�.

Dashed line in Fig. 8�b� is the inherent saddle line ob-
tained from the border of the dark-grey region �zero curva-
ture thermodynamic entropy� applying the minimization pro-
cedure of W. The latter has been performed solving steepest
descent equations of the form �̇=−�W starting from equi-
librium initial configurations and taking at the end the infi-
nite time limit. Following similar calculations of Ref. �21�,
we obtain the saddle energy es=e���� where ��

=L0�−	de /d�� / I0�−	de /d�� and L0 is the modified Struve
function of order 0: L0���=2�−1�0

�/2d� sinh�� cos ��. A bet-
ter correspondence is obtained between the light-grey border
and the dashed line, however the two regions are not yet
coincident. This indicates that the “weak” topological hy-
pothesis could only be considered a good approximation, but
not a quantitative prescription for the location of the phase
transitions. A comment is in order. Although obtained from
canonical ensemble, the saddle energy map �from instanta-
neous to saddle energy� is expected to be ensemble-
independent, when extrapolated to thermodynamically for-
bidden energy regions. “Ensemble inequivalence”
phenomena �23� are then supposed to not affect the results.

Summarizing: the singular behavior of � at e=0 signals
the presence of a thermodynamic transition, the curvature of
� is “quasirelated” to the presence of thermodynamically
forbidden region and then to the appearance of a first-order
transition. The quasirelation is due to the fact that there are
regions where the curvature of � is positive and the curva-
ture of thermodynamic entropy is negative.

B. H2+H6 case

In Fig. 9 the same as in the previous case is reported for
H=H2+H6. In the upper panel the energy dependence of �
is reported for the specific cases J6 /J2=0.1, 0.4, 1.5. As be-
fore, dashed lines correspond to positive curvature regions.
In Fig. 9�b� the plane �J6 /J2 ,e� is drawn: the light-grey re-
gion is the �-positive curvature and the dark-grey one is the
S-positive curvature. Dashed line is the inherent saddle coun-
terpart of dark region border. Again, except for an overall
qualitative behavior, we do not find a quantitative correspon-
dence between the two regions that, according to the weak
topological hypothesis, should coincide. We note that there
are values of parameters �0.2�J6 /J2�0.5� where the curva-
ture of � is upward �for certain energy values� and a second
order transition takes place �the curvature of S is downward�.

V. CONCLUSIONS

By analytically studying the thermodynamics and the to-
pology of mean-field models obtained by the sum of two
different interaction terms in the Hamiltonian �1�—2+4 and
2+6 body terms—we are able to compare thermodynamic
and topological quantities and test the validity of both the
“topological hypothesis” �1� and the “weak topological hy-
pothesis” �16�. The models have a rich phase space structure.
The H2+H4 model performs second or first order phase tran-
sition depending on the coupling parameters values �a tric-
ritical point joins the two�. The H2+H6 model has a further
possible behavior: it can undergo a double phase transition, a
second order followed by a first order one. Topological in-
variant �saddle entropy� has a change in correspondence of
the zero energy �the paramagnetic energy�, so confirming in
that case the equivalence between topological and thermody-
namic transition points. However, only one topological
change occurs, also for the H2+H6 model exhibiting two
phase transition points. Indeed, in this case the first order
phase transition does not have a topological counterpart, the
topological saddle entropy being a smooth function at the
corresponding phase transition energy values. It is worth not-
ing that this is a quite unexpected result, all the models ana-
lyzed so far presenting a topological change at some energy
value �even though not coincident with the phase transition
one for some model system�. Future studies should establish
if this is a mean-field “pathology” or has a deeper origin.
Moreover, the curvature of the saddle entropy �as a function
of energy�, seems not to be strictly related to the presence of
first order phase transition �as previously observed in a dif-
ferent model �14��: there are regions in the parameters values
for which positive curvature corresponds to second order
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FIG. 9. �Color online� H2+H6 case. �a� Saddle-entropy � as a
function of energy e �normalized by J2+J6� for the specific cases
J6 /J2=0.1, 0.4, 1.5. Full �dashed� lines correspond to negative
�positive� curvature. Symbols mark turning points. �b� Couplings-
energy plane: light-grey �gold online� region corresponds to � posi-
tive curvature, dark-grey �red online� region to entropy S positive
curvature. Dashed line is the inherent saddle counterpart of the
border of the dark-grey region.
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phase transitions. In other words, the curvature properties of
saddle entropy do not coincide with those of the thermody-
namic entropy. Taking into account the possibility that the
relevant energy levels are given by underlying saddles, a
better agreement between curvature regions has been found,
although there are no quantitative coincidence.

In conclusion, for the analyzed mean-field models a

topology change is present at the same energy level at which
a phase transition takes place, in agreement with the “topo-
logical hypothesis.” However, the information encoded in the
topology seems not to be sufficient to predict all the possible
thermodynamic behaviors of the system, such as the pres-
ence of two phase transition points or the phase transition
order.
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